Hall	Tick	et Nu	umbe	r:				2.55

Max. Marks: 70

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) III-Semester Main Examinations, December-2017

Engineering Mathematics-III

(Common to Civil, CSE, ECE & Mech.)

Time: 3 hours

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 × 2 = 20 Marks)

- 1. Write the Dirichlet's conditions for existence of Fourier series of a function f(x) in $(\alpha, \alpha + 2\pi)$.
- 2. Find the coefficient b_1 in the half-range Fourier sine series of $f(x) = \begin{cases} 1, & 0 < x < \frac{1}{2} \\ 0, & \frac{1}{2} \le x < 1 \end{cases}$
- 3. Solve $p-q=z^2$.
- 4. Find the complete integral of the partial differential equation $(px+qy-z)^2 = p^2 + q^2$
- 5. Find $\Delta(x + \cos x)$, if $h = \pi$.
- 6. Using Euler's method, find the approximate value of y(0.2) for the initial value problem $y' = x^2 + y^2$, y(0) = 1.
- 7. Derive normal equations for fitting a straight line by the method of least squares.
- 8. The equations of two regression lines are 2x-3y=0 and 4y-5x-8=0. Find the mean values \overline{x} and \overline{y} .
- 9. A fair die is tossed. Let the random variable X denote the twice the number appearing on the die. Find the probability distribution of X.
- 10. If $M_X(t) = \frac{2}{2-t}$ is the moment generating function of a random variable X, find the variance of X.

Part-B (5 × 10 = 50 Marks)

11. a) Obtain the Fourier series for $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$. Hence deduce that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}.$$
[7]

- b) Express f(x) = x as a cosine series in 0 < x < 2.
- 12. a) Find all possible second order partial differential equations by eliminating the arbitrary [4] constants a, b, c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
 - b) A tightly stretched string with fixed end points x = 0 and x = π is initially at rest [6] in its equilibrium position. If it is set vibrating by giving each point a velocity 0.03 sin x 0.04 sin 3x, find the displacement at any point of the string at any time t.

[3]

[5]

[5]

E001.1.1.001.900.2

13. a) The following table gives the velocity v of a particle at time t. Find its acceleration at [5] t=2.

t:	0	2	4	6	8	10	12
v:	4	6	16	34	60	94	131

b) Using Newton's divided difference formula, find the missing value from the following [5] table:

x:	1	2	4	5	6
y:	14	15	5	-	9

14. Find the coefficient of correlation and the equations of the two lines of regression [10] from the following data:

x	1	3	4	6	8	9	11	14
У	1	2	4	4	5	7	8	9

15. a) If a continuous random variable X has the distribution function

$$F(x) = \begin{cases} 0, & x \le 1 \\ k(x-1)^4, 1 < x \le 3, \text{ find the} & i \end{cases} \text{ probability density function } f(x) & ii \end{cases} k \quad [3]$$

$$1, & x > 3$$

and iii) mean.

b) Two independent samples of sizes 8 and 7 respectively had the following values of the [7] variable:

Sample1: 9 11 13 11 15 9 12 14 Sample2: 10 12 10 14 9 8 10

Is the difference between the means of samples significant? (Given $t_{0.05}(13) = 2.16$)

16. a) Expand $f(x) = |\cos x|$ in Fourier series for $-\pi < x < \pi$.

b) Find the general solution of
$$x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$$
. [5]

- 17. Answer any two of the following:
 - a) Find the cubic polynomial which takes the following values using Newton's [5] backward interpolation formula.

x:	0	1	2	3
f(x):	0	2	1	10

b) If θ is the acute angle between the two regression lines, show that

$$\tan \theta = \frac{1 - r^2}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$$

c) If X is a normal variate with mean 30 and standard deviation 5, find the probabilities [5] that i) $26 \le X \le 40$ and ii) $X \ge 45$.

(Given
$$P(0 < z < 2) = 0.4772$$
, $P(0 < z < 0.8) = 0.2881$, $P(0 < z < 3) = 0.4987$)

§§§§§§